Piccolo Theme

Daniel Townsend

May 07, 2024

1 Setup

2 Configuration
3 Help

4 Support Us

5 About

6 Contributing
7 Demo

8 Changes

Index

CONTENTS:

11
13
15
17
19
25

33

Piccolo Theme

A clean and modern theme for Sphinx.

CONTENTS: 1

https://www.sphinx-doc.org/en/master/

Piccolo Theme

2 CONTENTS:

CHAPTER
ONE

SETUP

1.1 Install Sphinx

[pip install sphinx

Create a docs folder within your project, and run sphinx-quickstart.

mkdir docs
cd docs
sphinx-quickstart

sphinx-quickstart will scaffold your documentation for you.

1.2 Install Piccolo Theme

[pip install piccolo_theme

Find the conf.py file that Sphinx generated for you. Within that set the following value:

[html_theme = 'piccolo_theme'

1.3 Building your docs

Sphinx creates a Makefile in your docs folder. To generate some HTML docs, run the following in the same directory
as your Makefile:

[make html

Within your docs folder, Sphinx will have generated some HTML files in _build/html.

To serve these files using Python, you can use:

[python -m http.server --directory _build/html/

Now open up http://localhost:8000 in your browser to see your beautiful docs!

http://localhost:8000

Piccolo Theme

4 Chapter 1. Setup

CHAPTER
TWO

CONFIGURATION

2.1 html_short_title

If you have a really long project name, you may prefer something shorter to appear in the navigation bar. Specify this
using html_short_title in conf.py:

conf.py

By default the project value is used in the nav bar.
project = 'My Extra Special Amazing Docs'

If specified, this will be used in the nav bar instead.
html_short_title = "Amazing Docs"

2.2 html_logo

If you want to use a logo in the nav bar instead of text, specify html_logo in conf.py:

conf.py

It can either be a path to an image, relative to conf.py:
html_logo = './static/logo.png’'

Or it can be a URL:
html_logo = 'https://awesome.com/static/logo.png’

2.3 pygments_style

We use the default Pygments theme for syntax highlighting of code blocks. It gives good results out of the box
(including great dark mode support).

If you’d prefer to use a different Pygments style, you can specify it using pygments_style in conf.py:

conf.py

pygments_style = "stata-dark"

Piccolo Theme

2.3.1 Dark Mode

When switching to dark mode, we automatically apply our own dark mode styles to code blocks. If you’d like to disable
this behaviour, see dark_mode code blocks.

2.4 Theme specific

2.4.1 banner_text

If this is provided then a banner is shown at the top of the page. It’s useful for important announcements.

conf.py

html_theme_options = {

Note how we can include links:

"banner_text": 'We just launched a newletter,
—please subscribe!"

}

2.4.2 banner_hiding

This controls how the banner behaves when hidden. The options are 'temporary' (the default) or 'permanent’'.

If 'temporary', when a user hides the banner they can still reopen it again. This is useful if you want to store important
information in the banner, which the user may need to refer to again. For example:

conf.py

html_theme_options = {
"banner_text": 'Please be aware of security issue XYZ!',
"banner_hiding": "temporary"

If "permanent’, when a user hides the banner it disappears permanently. This is useful when the banner contains
information which the user is unlikely to need again. For example:

conf.py

html_theme_options = {
"banner_text": 'Welcome to our amazing documentation!',
"banner_hiding": "permanent"

Note: If you configure a different banner_text value in the future, then the banner will appear again, even if the user
has previously hidden it.

6 Chapter 2. Configuration

Piccolo Theme

2.4.3 dark_mode_code_blocks

When switching to dark mode, we apply our own custom CSS styles to code blocks. This gives a great dark mode
experience out of the box.

However, if you’ve specified a custom Pygments theme (see pygments_style), and you want to use that theme for both
light mode and dark mode, you can disable our custom dark mode styles:

conf.py

html_theme_options = {
"dark_mode_code_blocks": False,
}

2.4.4 globaltoc_collapse

By default, the sidebar just shows the top level:

Contents:

Getting Started
Query Types
Query Clauses
Schema

Projects and Apps
Engines

Migrations

When you click on an item, it shows the children:

Contents:

Getting Started
What is Piccolo?
Database Support
Installing Piccolo
Playground
Setup Postgres
Setup Cockroach
Setup SQLite
Example Schema
Sync and Async

Query Types

Query Clauses

2.4. Theme specific 7

Piccolo Theme

If you want the children to be visible at all times, you can do so as follows:

conf.py

html_theme_options = {
"globaltoc_collapse": False
}

It will then look something like this:

Contents:

Getting Started
What is Piccolo?
Database Support
Installing Piccolo
Playground
Setup Postgres
Setup Cockroach
Setup SQLite
Example Schema
Sync and Async

Query Types
Select
Objects
Count
Alter
Create Table
Delete
Exists
Insert
Raw
Update
Transactions
Joins

Django Comparison

8 Chapter 2. Configuration

Piccolo Theme

2.4.5 show_theme_credit

At the bottom of the page is a very small link which says Styled using the Piccolo Theme.
This helps grow awareness of the project, and attract new contributors.

You can hide this if required:

conf.py

html_theme_options = {
"show_theme_credit": False

}

If hiding it, please consider supporting us in a different way.

2.4.6 source_url

If specified, a link is shown in the nav bar to the source code.

conf.py

html_theme_options = {
"source_url": 'https://github.com/piccolo-orm/piccolo_theme/'

}

We try and detect if the URL points to GitHub or GitLab, and show the correct icon. However, if you’re using a self
hosted version of GitHub or GitLab on a custom URL, you can explicitly tell the theme which icon to use:

conf.py

html_theme_options = {
"source_url": 'https://self-hosted.foo.com/',
"source_icon": "gitlab"

The available options for source_icon are:
* generic
e github
* gitlab

2.4. Theme specific 9

Piccolo Theme

10 Chapter 2. Configuration

CHAPTER
THREE

HELP

The best place to get help is on our GitHub discussions page.

It’s also a great place to share any feedback you have about the theme, and how we can make improvements.

11

https://github.com/piccolo-orm/piccolo_theme/discussions

Piccolo Theme

12 Chapter 3. Help

CHAPTER
FOUR

You can help us in many ways:
* Sharing the project with others
» Leaving feedback
» Starring the repo on GitHub
* Making improvements to the theme by making a pull request
* Buying our book about documentation and Sphinx

Thanks!

SUPPORT US

13

https://github.com/piccolo-orm/piccolo_theme/discussions
https://github.com/piccolo-orm/piccolo_theme
https://github.com/piccolo-orm/piccolo_theme
https://piccolo-store.com/books/mastering-docs/

Piccolo Theme

14 Chapter 4. Support Us

CHAPTER
FIVE

ABOUT

This theme was created to document Piccolo and sister projects.
Here’s a live example of it being used:

* https://piccolo-orm.readthedocs.io/en/latest/

15

https://github.com/piccolo-orm/piccolo
https://piccolo-orm.readthedocs.io/en/latest/

Piccolo Theme

16 Chapter 5. About

CHAPTER
SIX

6.1 Styles

We use Sass as a CSS preprocessor. The styles live in src/sass.

To modify the styles, first install Sass:

CONTRIBUTING

[npm install -g sass

Then run:

[./scripts/build—styles .sh

This will automatically rebuild your CSS when it detects a change in the Sass files.

6.2 Running the docs

By running Piccolo Theme’s docs you can verify that your changes look OK.

First install the requirements:

[pip install -r requirements/doc-requirements.txt

Then launch a web server using the following script:

[./scripts/run-docs.sh

It auto reloads when it detects changes to the documentation or theme files.

17

https://sass-lang.com/

Piccolo Theme

18 Chapter 6. Contributing

CHAPTER
SEVEN

DEMO

This is used to demonstrate various features, and also for testing.

7.1 Autodoc

class piccolo_theme.snippets.Column(null: bool = False, primary_key: bool = False, unique: bool = False,
index: bool = False, required: bool = False, help_text: str | None =
None, choices: Type[Enum] | None = None, db_column_name: str |

None = None, secret: bool = False, **kwargs)

All other columns inherit from Column. Don’t use it directly.

The following arguments apply to all column types:

Parameters

null — Whether the column is nullable.

primary_key — If set, the column is used as a primary key.
default — The column value to use if not specified by the user.
unique - If set, a unique contraint will be added to the column.

index — Whether an index is created for the column, which can improve the speed of selects,
but can slow down inserts.

index_method - If index is set to True, this specifies what type of index is created.

required — This isn’t used by the database - it’s to indicate to other tools that the user must
provide this value. Example uses are in serialisers for API endpoints, and form fields.

help_text — This provides some context about what the column is being used for. For
example, for a Decimal column called value, it could say 'The units are millions
of dollars'. The database doesn’t use this value, but tools such as Piccolo Admin use it
to show a tooltip in the GUI.

choices — An optional Enum - when specified, other tools such as Piccolo Admin will render
the available options in the GUI.

db_column_name — If specified, you can override the name used for the column in the
database. The main reason for this is when using a legacy database, with a problematic
column name (for example 'class’', which is a reserved Python keyword). Here’s an ex-
ample:

19

Piccolo Theme

class MyTable(Table):
class_ = Varchar(db_column_name="class")

>>> await MyTable.select(MyTable.class_)
[{'id': 1, 'class': 'test'}]

This is an advanced feature which you should only need in niche situations.

* secret —If secret=True is specified, it allows a user to automatically omit any fields when
doing a select query, to help prevent inadvertent leakage of sensitive data.

class Band(Table):
name = Varchar()
net_worth = Integer(secret=True)

>>> await Band.select(exclude_secrets=True)
[{'name': 'Pythonistas'}]

7.2 Breathe

class CppClass
CppClass class.
Details about CppClass.

Public Functions

const char *member_function(char, int)

A member function.
Parameters
e ¢ — a character.
* n-—an integer.

Throws
std: :out_of_range — parameter is out of range.

Returns
a character pointer.

void cpp_function(int *a, int *b, int *¢)
Doing important things with parameter directions.

Parameters
* a— [out] output
* b - [in] input

* c — [inout] input but gets rewritten

20 Chapter 7. Demo

Piccolo Theme

void c_function(int *a, int *b, int *c)
Doing important things with parameter directions.

Parameters
* a - [out] output
* b - [in] input

* ¢ - [inout] input but gets rewritten

7.3 Code Blocks

7.3.1 Basic

def say_hello():
print("hello world!")

7.3.2 Emphasize

def say_hello():
print("hello world!")

7.3.3 Line numbers

def say_hello(Q):
print("hello world!")

1

2

7.3.4 Caption

Listing 1: Some example code

def say_hello(Q):
print("hello world!")

7.4 Tables

7.4.1 Table 1

Name Drives

Alice True
Bob True
Curtis False

7.3. Code Blocks

21

Piccolo Theme

7.4.2 Table 2
Header 1 Header 2 Header 3
body row 1 column 2 column 3
body row 2 Cells may span columns.
And several paragraphs.
body row 3 Cells may span rows. * Cells
* contain
body row 4 * blocks.

7.5 Data definitions

Python
A great programming language.

Sphinx
A powerful documentation tool.

7.6 Lists

7.6.1 Unordered List

e Python
* Rust

* JavaScript

7.6.2 Ordered List

Explicit numbers:

1. Python

2. Rust

3. JavaScript
Auto numbers:

1. Python

2. Rust

3. JavaScript
Lower-alpha:

a. Rust

22

Chapter 7. Demo

Piccolo Theme

b. C++
c. C
Upper-alpha:
A. reStructuredText
B. HTML
C. Markdown
Lower-roman:
i. reStructuredText
ii. HTML
iii. Markdown
Upper-roman:
I. reStructuredText
II. HTML
III. Markdown

7.6.3 Nested List

1. Languages
a. Python
b. Rust

c. JavaScript

7.7 Admonitions

Warning: This is a warning!

Error: This is an error!

Hint: This is a hint!

Note: This is a note!

A custom admonition

7.7. Admonitions

23

Piccolo Theme

This is my custom admonition!

24 Chapter 7. Demo

CHAPTER
EIGHT

8.1 0.21.0

Allow parallel builds.

CHANGES

8.2 0.20.0

Added additional ordered list styles - thanks to @fizbin for reporting this.

8.3 0.19.0

Fixed span tags (thanks to @jvcarli for this).
Added support for Python 3.12.

8.4 0.18.0

Added z-index for the left sidebar on mobile.

8.5 0.17.0

Fixes to support Sphinx 7.2. Thanks to @alexlancaster for reporting this.

25

https://www.sphinx-doc.org/en/master/man/sphinx-build.html#cmdoption-sphinx-build-j

Piccolo Theme

8.6 0.16.1

Bundling the Roboto Mono bold-italic font with the theme, as it’s used in some code blocks. Thanks to @noxpardalis
for adding this.

8.7 0.16.0

The custom fonts are now bundled with the theme. Thanks to @noxpardalis for this.

8.8 0.15.0

Improved the colours used for showing emphasis in code blocks in dark mode.

Made some minor fixes to the HTML templates.

8.9 0.14.0

When switching to dark mode, we automatically apply our own custom dark mode styles to code blocks.

This gives a great experience out of the box. However, if someone uses their own Pygments theme, they might want to
use that theme in both light mode, and dark mode. They can now do so, using the dark_mode_code_blocks option.

conf.py

html_theme_options = {
"dark_mode_code_blocks": False
}

8.10 0.13.0

A logo can now be used in the nav bar, instead of text.

conf.py

Relative to conf.py:
html_logo = './path/to/logo.png'

Or an absolute URL:
html_logo = 'https://awesome.com/static/logo.png’

Thanks to @are-scenic for adding this.

26 Chapter 8. Changes

Piccolo Theme

8.11 0.12.0

You can now specify the source code URL, and it will show in the nav bar.

conf.py

html_theme_options = {
"source_url": 'https://github.com/piccolo-orm/piccolo_theme/'

}

The icon is inferred automatically based on the URL (in the above example, we show the GitHub logo). You can
explicitly set the icon if you prefer:

conf.py

html_theme_options = {
"source_url": 'https://self-hosted.foo.com/',
"source_icon": "gitlab"

8.12 0.111

Minor style fix on search page.

8.13 0.11.0

Fixed some styles in Sphinx v5.

8.14 0.10.2

Drop Python 3.7 specific syntax.

8.15 0.10.1

Fix typo in setup.py.

8.11. 0.12.0 27

Piccolo Theme

8.16 0.10.0

Added support for Python 3.6, as many Ubuntu systems will still be using that version, and Sphinx still supports it.

Thanks to @oncilla for reporting this issue.

8.17 0.9.0

Improved the appearance of autodoc output for C files (when using breathe). Courtesy @thijsmie.

8.18 0.8.1

Changed the arrow symbols - they didn’t look great on mobile.

8.19 0.8.0

Added spacing between sections, so it’s not necessary to add horizontal dividers any more.

My Heading

Some content

We can now just do:

My Heading

Some content

(continues on next page)

28 Chapter 8. Changes

https://breathe.readthedocs.io/en/latest/

Piccolo Theme

(continued from previous page)

Section 2

Some content

Other minor changes:
» Using unicode triangle character instead of < for some links

¢ Plain admonitions are now styled properly:

. admonition:: A custom admonition

This is my custom admonition!

8.20 0.7.1

Improvements to the notification feature - it was causing too many browser reflow operations.

8.21 0.7.0

A notification can now be shown at the top of each page.

conf.py

html_theme_options = {
"banner_text": 'Welcome to our amazing documentation!',
"banner_hiding": "permanent"

}

This involved quite a few CSS changes - please clear your browser cache if anything appears broken.

8.22 0.6.0

If html_short_title is in conf.py then this is used in the nav bar instead of the full project title.

8.20. 0.7.1

29

Piccolo Theme

8.23 0.5.1

Fixed dark mode styles - some elements weren’t visible. Thanks to @alorence for reporting this issue.

8.24 0.5.0

Added table styles.

8.25 0.4.0

Improved the appearance of autodoc output for C++ files (when using breathe). Courtesy @thijsmie.

8.26 0.3.0

Added dark mode.

8.27 0.2.5

Improved search styles.

8.28 0.2.4

Added missing requirements.txt file to manifest. Thanks to @moorepants for reporting this.

8.29 0.2.3

Make the page contents text smaller when the right hand sidebar is hidden.

30 Chapter 8. Changes

https://breathe.readthedocs.io/en/latest/

Piccolo Theme

8.30 0.2.2

Fix missing static files.

8.31 0.2.1

Fix missing static files.

8.32 0.2.0

Improved the main header on mobile - the search bar is replaced with a search icon. Also increased the size of the
touch targets for showing / hiding the right sidebar, for easier use on mobile. See PR 7.

8.30. 0.2.2 31

https://github.com/piccolo-orm/piccolo_theme/pull/7

Piccolo Theme

32

Chapter 8. Changes

C

c_function (C function), 20

Column (class in piccolo_theme.snippets), 19
cpp_function (C++ function), 20

CppClass (C++ class), 20

CppClass: :member_function (C++ function), 20

INDEX

33

	Setup
	Install Sphinx
	Install Piccolo Theme
	Building your docs

	Configuration
	html_short_title
	html_logo
	pygments_style
	Dark Mode

	Theme specific
	banner_text
	banner_hiding
	dark_mode_code_blocks
	globaltoc_collapse
	show_theme_credit
	source_url

	Help
	Support Us
	About
	Contributing
	Styles
	Running the docs

	Demo
	Autodoc
	Breathe
	Code Blocks
	Basic
	Emphasize
	Line numbers
	Caption

	Tables
	Table 1
	Table 2

	Data definitions
	Lists
	Unordered List
	Ordered List
	Nested List

	Admonitions

	Changes
	0.21.0
	0.20.0
	0.19.0
	0.18.0
	0.17.0
	0.16.1
	0.16.0
	0.15.0
	0.14.0
	0.13.0
	0.12.0
	0.11.1
	0.11.0
	0.10.2
	0.10.1
	0.10.0
	0.9.0
	0.8.1
	0.8.0
	0.7.1
	0.7.0
	0.6.0
	0.5.1
	0.5.0
	0.4.0
	0.3.0
	0.2.5
	0.2.4
	0.2.3
	0.2.2
	0.2.1
	0.2.0

	Index

